Refine Your Search

Topic

Author

Search Results

Standard

Motor Vehicle Seating Glossary

2010-06-03
WIP
J2897
This document provides technology, terminology, and procedural definitions common in Motor Vehicle seat design and testing.
Standard

Motor Vehicle Measurement Certification Standard

2012-08-15
WIP
J3017
This recommended practice applies to any vehicle manufacturer that chooses to publish vehicle dimensions and specifications that may influence customer purchase decisions. The intent is to define standardized vehicle dimensions that reflect showroom conditions and / or dimensions experienced during purchase conditions and also include published dimensions used in marketing / advertising materials irrespective of communications media that influence purchase decisions This document also provides a method to certify OEM and 3rd party compliance with recommended SAE and ISO measurement practices for vehicle dimensions commonly reported publically for marketing and competitive vehicle analysis
Standard

Optical Simulation and Analysis for Aircraft Lighting

2022-06-27
CURRENT
ARP6833
This document contains guidance for designers, specifiers, regulatory personnel, purchasers, managers, and others who specify or use optical simulations of aircraft lights. All aircraft lighting will be considered interior, flight deck, and exterior lighting. Guidance on standard methods of analysis and presentation of data will be provided. Although this document concentrates on lighting, many of the principles covered will be helpful in other types of optical simulation, such as for displays, non-visible radiation, etc.
Standard

In-Flight Thrust Determination for Aircraft with Thrust Vectoring

2022-06-14
CURRENT
AIR6007
The purpose of this document is to provide guidance on in-flight thrust determination of engines that are impacted by intentional or unintentional thrust vectoring. However, as indicated in the Foreword, the field of aircraft thrust vectoring is varied and complex. For simplicity and coherence of purpose, this document will be limited in scope to multi-axis thrust vectoring nozzles or vanes attached to the rear of the engine or airfame; single-axis thrust vectoring and unintentional thrust vectoring (fixed shelf or deck configuration) are special cases of this discussion. Specifically excluded from this scope are thrust vectoring created primarily by airframe components such as wing flaps, etc.; lift engines, propulsive fans and thrust augmenting ejectors; and powerplants that rotate or otherwise move with respect to the airframe.
Standard

Procedure for the Calculation of non-volatile Particulate Matter Sampling and Measurement System Penetration Functions and System Loss Correction Factors

2022-06-24
CURRENT
AIR6504
This SAE Aerospace Information Report (AIR) describes a method for assessing size dependent particle losses in a sampling and measurement system of specified geometry utilizing the non-volatile PM (nvPM) mass and number concentrations measured at the end of the sampling system.1 The penetration functions of the sampling and measurement system may be determined either by measurement or by analytic computational methods. Loss mechanisms including thermophoretic (which has a very weak size dependence) and size dependent losses are considered in this method2 along with the uncertainties due to both measurement error and the assumptions of the method. The results of this system loss assessment allow development of estimated correction factors for nvPM mass and number concentrations to account for the system losses facilitating estimation of the nvPM mass and number at the engine exhaust nozzle exit plane.
Standard

Verification of Landing Gear Design Strength

2007-07-09
HISTORICAL
AIR1494A
Verification of landing gear design strength is accomplished by dynamic and static test programs. This is essentially a verification of the analytical procedures used to design the gear. An industry survey was recently conducted to determine just what analysis and testing are currently being applied to landing gear. Timing in relation to first flight of new aircraft was also questioned. Opinions were solicited from designers of the following categories and/or types of aircraft: a Military - Large Land Based (Bomber) b Military - Small Land Based (Fighter) c Military - Carrier Based (Navy) d Military - Helicopter (Large) e Military - Helicopter (Small-attack) f Commercial - Large (Airliner) g Commercial - Small (Business) h USAF (WPAFB) - Recommendations It is the objective of this AIR to present a summary of these responses. It is hoped that this summary will be useful to designers as a guide and/or check list in establishing criteria for landing gear analysis and test.
Standard

Cost Versus Benefits of Engine Monitoring Systems

2005-10-28
HISTORICAL
AIR4176
The purpose of this SAE Aerospace Information Report (AIR) is to provide information that would be useful to potential users/operators and decision makers for evaluating and quantifying the benefits of an Engine Monitoring Systems (EMS) versus its cost of implementation. This document presents excerpts from reports developed to analyze “actual aircraft cost/benefits results”. These are presented as follows: a First, to outline the benefits and cost elements pertaining to EMS that may be used in performing a cost versus benefits analysis. b Second, to present considerations for use in conducting the analysis. c Third, to provide examples of analyses and results as they relate to the user/operator and decision-maker community. The document encompasses helicopters and fixed wing aircraft and distinguishes between civilian and military considerations.
Standard

Cost Versus Benefits of Engine Monitoring Systems

2019-10-01
WIP
AIR4176B
The purpose of this SAE Aerospace Information Report (AIR) is to provide information that would be useful to potential users/operators and decision makers for evaluating and quantifying the benefits of an Engine Monitoring Systems (EMS) versus its cost of implementation. This document presents excerpts from reports developed to analyze "actual aircraft cost/benefits results". These are presented as follows: a. First, to outline the benefits and cost elements pertaining to EMS that may be used in performing a cost versus benefits analysis. b. Second, to present considerations for use in conducting the analysis. c. Third, to provide examples of analyses and results as they relate to the user/operator and decision-maker community. The document encompasses helicopters and fixed wing aircraft and distinguishes between civilian and military considerations.
Standard

Measurement Uncertainty Applied to Cost-Effective Testing

2016-04-14
WIP
AIR5925B
The report shows how the methodology of measurement uncertainty can usefully be applied to test programs in order to optimize resources and save money. In doing so, it stresses the importance of integrating the generation of the Defined Measurement Process into more conventional project management techniques to create a Test Plan that allows accurate estimation of resources and trouble-free execution of the actual test. Finally, the report describes the need for post-test review and the importance of recycling lessons learned for the next project.
Standard

Health and Usage Monitoring Metrics Monitoring the Monitor

2018-05-03
CURRENT
ARP5783
This recommended practice applies to vibration monitoring systems for rotorcraft and fixed-wing drive trains, airframes, propulsion systems, electric power generators, and flight control systems. It addresses all aspects of metrics, including what to measure, how to measure, and how to evaluate the results.
Standard

Minimum Operational Performance Specification for Ground Ice Detection Systems

2002-02-11
HISTORICAL
AS5116A
This SAE Aerospace Standard (AS)/Minimum Operational Performance Specification (MOPS) specifies the minimum performance requirements of Ground Ice Detection Systems (GIDS). These systems may be mounted onboard the airplane, or be ground-based. They may provide information for indication and/or control. Chapter 1 provides information required to understand the need for the GIDS characteristics and tests defined in the remaining chapters. It describes typical GIDS applications and operational objectives and is the basis for the performance criteria stated in Chapter 2 through Chapter 4. Definitions essential to the proper understanding of this document are provided in Chapter 1. Chapter 2 contains general design requirements for an ice detection system used during ground operations. Chapter 3 contains the Minimum Operational Performance Requirements for the GIDS, defining performance under icing conditions likely to be encountered during ground operations.
Standard

Minimum Operational Performance Specification for Ground Ice Detection Systems

2003-06-24
HISTORICAL
AS5116B
This SAE Aerospace Standard (AS)/Minimum Operational Performance Specification (MOPS) specifies the minimum performance requirements of Ground Ice Detection Systems (GIDS). These systems may be mounted onboard the airplane, or be ground-based. They may provide information for indication and/or control. Chapter 1 provides information required to understand the need for the GIDS characteristics and tests defined in the remaining chapters. It describes typical GIDS applications and operational objectives and is the basis for the performance criteria stated in Chapter 3 through Chapter 5. Definitions essential to the proper understanding of this document are provided in Chapter 1. Chapter 3 contains general design requirements for an ice detection system used during ground operations. Chapter 4 contains the Minimum Operational Performance Requirements for the GIDS, defining performance under icing conditions likely to be encountered during ground operations.
Standard

CDIF - Transfer Format Encoding - ENCODING.1

2016-06-15
CURRENT
EIAIS110
The CDIF Family of Standards is primarily designed to be used as a description of a mechanism for transferring information between CASE tools. It facilitates a successful transfer when the authors of the importing and exporting tools have nothing in common except an agreement to conform to CDIF. The language that is defined for the Transfer Format also has applicability as a general language for Import/Export from repositories. The CDIF Integrated Meta-model defined for CASE also has applicability as the basis of standard definitions for use in repositories. The standards which form the complete family of CDIF Standards are documented in EIA/IS-106 CDIF - CASE Data Interchange Format - Overview. These standards cover the overall framework, the transfer format and the CDIF Integrated Meta-model. The diagram in Figure 1 depicts the various standards that comprise the CDIF Family of Standards. The shaded box depicts this Standard and its position in the CDIF Family of Standards.
X